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Deployment of wind energy is an essential renewable energy
source that mitigates climate change and reduces air pollution
[1]. Over the last several decades, wind energy development has
increased worldwide, expanding from �20 to �900 GW (gigawatt)
during 2001–2022 [1]. Nonetheless, researchers have identified
unintended consequences of wind energy on microclimate via
turbine-altered surface-atmosphere exchanges of energy, momen-
tum, mass, and trace gases [2,3]. Based on multi-source observa-
tions and models, researchers also have drawn some conclusions
that wind farms could warm the land surface, especially at night,
at regional and continental scales [4,5]. Consequently, altered
microclimates at wind farms may affect vegetation productivity
and carbon sequestration, two critically important ecosystem ser-
vices related to carbon dynamics; however, such potential impacts
and driving mechanisms remain poorly understood [6]. Wind
energy deployment is increasing globally to meet carbon neutrality
goals, with upscaling of onshore wind power capacity projected to
grow from 542 GW in 2018 to 1787 and 5044 GW by 2030 and
2050, respectively [7]. Increased demand for wind energy deploy-
ment may lead to much larger wind farms in open, expansive land-
scapes [7]. In turn, a large array of geographically clustered wind
turbines could collectively modify local microclimate and amplify
turbine-atmosphere interactions, which, if large enough, may pro-
duce detectable impacts on ecosystem dynamics. Thus, identifying
and quantifying the potential impacts of wind farms on carbon-
related ecosystem services may facilitate sustainable wind energy
development globally.

Currently, China is the world leader in wind energy deploy-
ment, accounting for one-third of global installed capacity [8].
Total installed capacity has been rapidly growing in China over
the last two decades, increasing from less than 1 GW in 2001 to
nearly 200 GW in 2018 (Fig. S1 online), and �334 GW in 2022
[1]. China’s northern grasslands are considered prime environ-
ments for wind energy deployment because they provide abundant
and accessible onshore wind resources [9]. Compared to the United
States (https://eerscmap.usgs.gov/uswtdb), where most wind
farms are co-located with croplands, wind farms in northern Chi-
na’s grasslands experience less human disturbance (e.g., no agri-
cultural irrigation and fertilizer use), providing a unique
opportunity to assess wind energy impacts on carbon-related
ecosystem services (Fig. S2 online).

(i) Impacts of wind farms on vegetation growth. We evaluated the
effects of wind farms (i.e., array of geographically clustered wind
turbines; Methods) on grassland growth during peak growing sea-
son (June–August; Fig. S3 online), using time series of the normal-
ized difference vegetation index (NDVI) from moderate-resolution
imaging spectroradiometer (MODIS) during 2001–2018. We calcu-
lated NDVI anomaly as the difference in NDVI between wind farms
and nearby control regions with similar local environmental condi-
tions but no turbines (Figs. S4 and S5; Tables S1–S5 online). We
quantified the effects of wind farms on vegetation growth by calcu-
lating the changes in NDVI anomaly during 2001–2018 (denoted as
DNDVI; Methods; Fig. S6 online). We found that eleven out of the
sixteen (�70%) wind farms exhibited reduced grassland growth
over time, as indicated by negative DNDVI (Fig. S7 online). Reduc-
tions in grassland growth were exacerbated by the size of wind
farms (Fig. 1a), with stronger negative DNDVI at large wind farms
(>1000 turbines). The spatial variation of DNDVI was not corre-
lated with spatial heterogeneity in climate (i.e., temperature, pre-
cipitation, and vapor pressure deficit), elevation, vegetation
cover, and density of clustered wind turbines (Fig. S8 online),
which suggests that the size of wind farms (i.e., number of the clus-
tered wind turbines) primarily drove reductions in grassland
growth. These findings are further corroborated by additional
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https://eerscmap.usgs.gov/uswtdb
https://doi.org/10.1016/j.scib.2023.10.016
mailto:donghaiwu@scbg.ac.cn
mailto:xx286@cornell.edu
https://doi.org/10.1016/j.scib.2023.10.016
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib
https://doi.org/10.1016/j.scib.2023.10.016
https://doi.org/10.1016/j.scib.2023.10.016


Fig. 1. Impacts of wind farms on vegetation growth and carbon cycling in peak growing season. (a) Relationship between the number of turbines and the MODIS DNDVI (the
normalized difference vegetation index) across the sixteen wind farms. (b) Relationship between the number of turbines andDNEP (net ecosystem productivity),DGPP (gross
primary productivity), and DER (ecosystem respiration) across the sixteen wind farms. (c) Relationship between MODIS DNDVI and DVPD (vapor pressure deficit) across the
sixteen wind farms. (d) Relationship between MODIS DNDVI and DBLF (bare land fraction) across the sixteen wind farms. The grey shaded area represents 95% confidence
interval of the linear regression.
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vegetation metrics sourced from multiple satellite platforms
(Figs. S9 and S10 online).

(ii) Impacts of wind farms on carbon sequestration. To explore the
implications of reduced grassland growth at wind farms for regio-
nal ecosystem carbon sequestration, we evaluated the net ecosys-
tem productivity (NEP), estimated as the difference between gross
primary productivity (GPP) and ecosystem respiration (ER) [10].
Following the same time-series analysis (see Methods), we defined
DGPP, DNEP, and DER as the changes of GPP, NEP, and ER anomaly
during 2001–2018, respectively. Our results show a strong, nega-
tive relationship between the size of wind farms and DNEP
(Fig. 1b; R2 = 0.83), indicating that losses of ecosystem carbon
sequestration enlarge most at the largest wind farms. In compar-
ison to multi-year mean carbon sequestration, relative carbon
sequestration loss can reach 50% at the largest wind farms
(Fig. S11 online). Negative DNEP is primarily driven by decreases
in GPP rather than ER (Fig. 1b). Further assessment of effects on
carbon sequestration outside of the peak growing season corrobo-
rated that reductions in carbon sequestration primarily occurred
during the growing season (Fig. S12 online) rather than in the
non-growing season (Fig. S13 online).

(iii) Mechanisms of the impacts on vegetation growth. In arid and
semi-arid grasslands, natural vegetation dynamics are constrained
by both soil and atmospheric water availability [11], and local
hydrometeorological factors affected by the presence of wind farms
may influence grassland growth. Thus, using the same time-series
analysis for vegetation growth (see Methods), we investigated the
effects of wind farms on the local hydrometeorological factors that
can affect grassland growth, including precipitation, soil moisture,
and vapor pressure deficit (VPD)—an atmospheric dryness metric
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calculated as the difference between saturated vapor pressure and
actual vapor pressure (see Methods). Wind farms showed no effects
on peak growing season precipitation and soil moisture but signifi-
cant impacts on VPD (Figs. S14 and S15 online). Specifically, DVPD
(i.e., changes of VPD anomaly during 2001–2018) at large wind
farms (>1000 turbines,�46 Pa) showed a greater increase than small
and medium wind farms (<1000 turbines, �10 Pa). Further, we
found that increased saturated vapor pressure and decreased actual
vapor pressure contributed equally to local atmospheric drying at
large wind farms (Fig. S16 online). The increased saturated vapor
pressure may be a result of local warming due to turbine-
enhanced turbulence, which can alter vertical heat distribution in
the atmospheric boundary layer and ultimately raise near-surface
temperature [4]. This local warming may also be linked to less land
surface cooling by reduced evapotranspiration (Figs. S14 and S15
online). The decrease in actual vapor pressure is likely caused by
turbine-enhanced turbulence as well, which brings drier air in the
upper atmospheric boundary layer to the near-surface [2] and
thereby decreases air humidity (Fig. S16 online).

We determined that turbine-induced atmospheric drying can
largely explain reduced grassland growth across all wind farms
(Fig. 1c; R2 = 0.51). Specifically, stronger reductions in grassland
growth at larger wind farms are associated with greater increases
in VPD. In water-limited grasslands, vegetation growth is highly
constrained by atmospheric moisture conditions [12]. Leaf stomata
close in response to atmospheric drying, which can limit photosyn-
thesis and growth [13]. We verified the negative impact of atmo-
spheric drying on grassland growth in subsequent analyses of
other vegetation metrics from various satellite platforms
(Fig. S17 online).
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Aside from the climatic impacts of wind farms, we also quanti-
fied effects of land-use change (i.e., increased bare land fraction,
BLF) on vegetation growth at the wind farms. We found a weak
relationship between DBLF (i.e., changes of BLF anomaly during
2001–2018) and DNDVI (Fig. 1d), and the DBLF explains �10% of
changes in grassland growth as inferred from a range of vegetation
indices (Fig. S18 online). The lack of a strong signal of land-use
change on grassland growth is likely due to the relatively small
footprint of individual turbines compared to the large, inter-
turbine spacing extending hundreds of meters to optimize wind
farm efficiency [14]. Thus, we conclude that atmospheric drying
could be the main driver of reduced grassland growth, as con-
firmed by a multiple regression model considering both DVPD
and DBLF as independent variables (Fig. S19 online).

(iv) Issues and perspectives. Our work mainly detected the
impacts of wind farms on vegetation growth and carbon cycling
using multi-source remote sensing datasets. In addition to vegeta-
tion productivity, since wind farms are widely observed to increase
near-surface temperature in their host ecosystems [4,5], wind
farms may affect the microbial decomposition of soil organic car-
bon. Thus, long-term field experiments and flux observations are
highly recommended to detect the possible impacts and back-
ground mechanisms [6]. In addition, given that the current mesos-
cale weather research and forecasting (WRF) model has integrated
the effects of wind farms on the local climate [6], coupling the cli-
mate model and ecosystem model should be developed on a high
priority to provide simulations and predictions of the wind farm
impacts on ecosystem carbon cycling at large spatial scales [3,5].

To dive into detailed mechanisms of the wind farm impacts on
local environments, we require more public datasets in terms of
the wind turbine information (e.g., construction time, nominal
power, and operation periods) and wind farm microclimate (e.g.,
wind direction and wind speed). The information can also help to
optimize the methods in our study and reduce the potential uncer-
tainties. Currently, the United States Wind Turbine Database
(USWTDB) has provided the geolocations and construction time
of all wind turbines in the United States (https://eerscmap.usgs.
gov/uswtdb/), while there are still no available datasets of wind
turbines in China. Given that our view paper highlights the impor-
tance of identifying and quantifying wind farms’ potential impacts
on carbon-related ecosystem services, our work can help call for
public wind turbine datasets from energy departments.

In summary, we show here that large wind farms decrease veg-
etation productivity and cause losses in carbon sequestration, indi-
cating a previously unknown trade-off between wind energy
production and carbon-related ecosystem services. The need to
meet net-zero emission targets by mid-century leads to much lar-
ger arrays of geographically clustered wind turbines in open,
expansive landscapes [7]. This trend towards larger wind farms
may amplify turbine-induced atmospheric drying (Fig. S20 online),
increasing water stress on local vegetation productivity. Under-
standing and assessing these unintended consequences of large-
scale wind energy development for ecosystems and their services
can facilitate efficient adaptation and management strategies for
a sustainable energy future [15].
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