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Abstract

As a general rule, plants defend against herbivores with multiple traits.

The defense synergy hypothesis posits that some traits are more effective when

co-expressed with others compared to their independent efficacy. However,

this hypothesis has rarely been tested outside of phytochemical mixtures, and

seldom under field conditions. We tested for synergies between multiple

defense traits of common milkweed (Asclepias syriaca) by assaying the perfor-

mance of two specialist chewing herbivores on plants in natural populations.

We employed regression and a novel application of random forests to identify

synergies and antagonisms between defense traits. We found the first direct

empirical evidence for two previously hypothesized defense synergies in milk-

weed (latex by secondary metabolites, latex by trichomes) and identified

numerous other potential synergies and antagonisms. Our strongest evidence

for a defense synergy was between leaf mass per area and low nitrogen con-

tent; given that these “leaf economic” traits typically covary in milkweed, a

defense synergy could reinforce their co-expression. We report that each of the

plant defense traits showed context-dependent effects on herbivores, and

increased trait expression could well be beneficial to herbivores for some

ranges of observed expression. The novel methods and findings presented here

complement more mechanistic approaches to the study of plant defense diver-

sity and provide some of the best evidence to date that multiple classes of plant

defense synergize in their impact on insects. Plant defense synergies against

highly specialized herbivores, as shown here, are consistent with ongoing

reciprocal evolution between these antagonists.
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INTRODUCTION

Plant defenses structure plant and insect communities,
shape the way that primary productivity flows through to

the rest of the food web, and can strongly impact the suc-
cess of individual plants in the face of herbivory (Coley
et al., 2018; Kant et al., 2015; Kursar et al., 2009).
Consequently, ecologists have spent decades developing
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and evaluating theories to explain when and how plants
should defend themselves (Agrawal, 2011). One consis-
tent finding is that individual plants generally have mul-
tiple, diverse defense traits (Agrawal & Fishbein, 2006;
Duffey & Stout, 1996; Salazar et al., 2018). Explaining
why plants invest in multiple defenses is an open ques-
tion, especially since there is evidence that selection has
favored specific combinations of defense traits (“defense
syndromes”; Agrawal & Fishbein, 2006; da Silva &
Batalha, 2011; Sanczuk et al., 2020; cf. Moles et al., 2013).
Several nonexclusive hypotheses have been proposed to
explain both the prevalence of multitrait defense strate-
gies and the specific combinations of defenses that are
observed (Agrawal, 2011).

Jones and Firn (1991) articulated the problem of multi-
ple phytochemical defenses clearly: Individual plants often
express many different types of secondary metabolites, and
it is difficult to explain why. One of the leading explanations
for multiple secondary metabolites is synergistic interac-
tions between different compounds (Duffey & Stout, 1996;
Richards et al., 2016; Wetzel & Whitehead, 2020). For exam-
ple, the furanocoumarin xanthotoxin is more toxic when
mixed with other furanocoumarins than expected from its
effects alone (Berenbaum et al., 1991); similarly, amides in
Piper plants are more effective in combination than sepa-
rately (Dyer et al., 2003; Richards et al., 2010; Scott
et al., 2002; Whitehead & Bowers, 2014). Synergies have
also been detected in phytochemical defenses against
microbes (e.g., Muroi & Kubo, 1993; Stermitz et al., 2000)
and fungi (Cipollini & Stiles, 1992). Conversely, ecologists
have also detected antagonistic relationships, where com-
pounds reduce the efficacy of each other, including among
furanocoumarins (Diawara et al., 1993) and amides
(Whitehead & Bowers, 2014) and between pyrrolizidine
alkaloids and chlorogenic acid (Liu et al., 2017). Tests for
synergies and antagonisms between secondary metabolites
are still relatively rare (Richards et al., 2016), but there have
been almost no tests for synergies between classes of
defenses (e.g., physical and chemical defenses), even though
there is every reason to expect them to exist (Agrawal, 2011;
Rasmann & Agrawal, 2009; Richards et al., 2016, but see
Green et al., 2001; Steppuhn & Baldwin, 2007).

Studies of synergies between phytochemicals gener-
ally measure the responses of herbivores to artificial diets
with manipulated concentrations of phytochemicals in
an ANOVA design (e.g., Berenbaum et al., 1991; Dyer
et al., 2003; Scott et al., 2002; Stamp & Yang, 1996).
Accordingly, synergy or antagonism is detected based on
the interaction term of the two (or more) treatments (for
a discussion on the appropriate null model for this exper-
imental design, see Hay, 1996; Nelson & Kursar, 1999;
Pennings, 1996). For experimental designs with continu-
ously varying defense traits, the logical extension of this

approach is regression of herbivore performance
(e.g., growth, survival) on levels of defense traits
(e.g., concentrations of different phytochemicals) with a
term for the interaction between two traits that captures
potential synergies or antagonisms (Richards et al., 2016)
(compare Figure 1a,b with Figure 1c,d). However,
implicit in this regression modeling approach is the
assumption of a bilinear interaction: that the synergistic
benefit (or antagonism) of one additional unit of defense
trait A for each unit of defense trait B is the same regard-
less of the initial levels of A or B (e.g., Figure 1c,d).
However, other relationships are biologically reasonable.
The synergistic benefit of one trait might be a threshold
effect (e.g., Figure 1e,f). This could occur if sufficient
quantities of a defense causes a switch in herbivore
behavior (e.g., Trichoplusia ni exhibit trenching behavior
on latex-bearing plant species and not on others) and the
effect of a second defense is impacted by herbivore
behavior (Dussourd & Denno, 1994). Alternatively, a syn-
ergy might have diminishing marginal returns
(e.g., Figure 1e,f), with the benefit of the synergy most
prominent when increasing from low to moderate levels
of trait expression.

To identify complex relationships like these in experi-
mental data, in this paper we introduce tests for synergies
and antagonisms using random forest regression.
Random forests are a popular form of machine learning
that fit data using an ensemble (effectively, model averag-
ing) of many decision trees (James et al., 2021). Because
of this structure, random forest models are very flexible
and can capture nonlinear trends in data. Recent innova-
tions have provided a framework for harnessing the flexi-
ble nature of random forests to make inferences about
interactions, as we do here (Hooker, 2007; Hooker &
Mentch, 2019). To our knowledge, this approach for iden-
tifying interactions with random forests has not been
used in ecology, so we include thoroughly annotated code
on Figshare (Edwards et al., 2022).

Our experiments involved herbivores feeding on com-
mon milkweed, Asclepias syriaca, a well-characterized
system for studying plant defenses. Milkweed produces
toxic phytochemicals—cardenolides—that are potent
defenses and severely limit which species of herbivores
that can feed on it, leading to a simplified herbivore com-
munity (Agrawal, 2017). In addition to cardenolides,
A. syriaca also employs other defenses: Trichomes on the
leaf surfaces may reduce traction and insect access to
feeding (Agrawal et al., 2009), latex exuded from chan-
nels (laticifers) in damaged tissues can cement insect
mouth parts shut (Agrawal & Konno, 2009), and leaf
toughness and low nutrient content may reduce insect
preference or performance (Agrawal & Fishbein, 2006).
Furthermore, expression of these defensive traits varies
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F I GURE 1 Legend on next page.
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substantially in natural conditions within species,
allowing experiments to capture broad ranges of defense
traits in a field setting.

Two putative defense synergies have been proposed
for milkweed plants (Agrawal, 2011): latex with tri-
chomes and latex with cardenolides. First, freshly
hatched monarch butterfly caterpillars were observed to
first carefully chew off trichomes in a small feeding
region and then to bite into the leaf tissue (Zalucki
et al., 2002). At this point, latex exudes, and the caterpil-
lar must struggle free before it can consume the leaf tis-
sue. Many caterpillars fail to survive this first exposure to
latex (Zalucki et al., 2001). Trichomes and latex may thus
act synergistically, with higher densities of trichomes
leaving neonate caterpillars more exhausted when they
encounter the first-bite latex, and thus less able to strug-
gle free. There is indirect evidence for a synergy between
these traits: across Asclepias species, these two traits also
show correlated evolution (Agrawal & Fishbein, 2006).
Second, A. syriaca latex contains cardenolides that mirror
the concentrations found in leaves (Agrawal et al., 2014;
Züst et al., 2019), so latex may be a vehicle to deliver
toxins directly into the mouth of feeding herbivores in
addition to physically gumming up mouthparts. In this
way, latex acts as both a chemical and a physical barrier
when cardenolide expression is high, suggesting a syn-
ergy between latex and cardenolide expression. There are
indications that this mechanism may be present in other
plants with latex and secondary metabolites, as reduced
levels of secondary metabolites in latex led to increased
herbivory in the common dandelion (Taraxacum
officinale; Huber et al., 2016). Although latex by trichome
and latex by cardenolide synergies in milkweeds have
been proposed over the last two decades, no direct empir-
ical evidence for either has been produced. Both syner-
gies include latex, which is most prominently a defense
against chewing herbivores; the latex by trichome syn-
ergy is specifically hypothesized from observations of

monarch caterpillar behavior and may not be relevant for
other herbivores with different feeding behaviors.

No specific antagonisms have been hypothesized for A.
syriaca or even widely discussed in the broader literature
outside of antagonisms between individual secondary
metabolites (e.g., Calcagno et al., 2002; Diawara et al.,
1993; Liu et al., 2017; Whitehead & Bowers, 2014). For
specialist insects that are able to sequester plant toxins, we
might expect an antagonistic relationship between second-
ary metabolites and traits that increase predation—indirect
defenses that attract natural predators. Indeed, any plant
traits that are somewhat effective against herbivores but
also have negative effects on natural enemies of herbivores
could be antagonistic with indirect defenses.

In this study we evaluated plant defense synergies
and antagonisms using herbivore performance on com-
mon milkweed A. syriaca under field conditions,
employing both well-established regression approaches
and a novel application of random forests. Although the
majority of existing studies of synergies have used artifi-
cial diets, we measure herbivore performance under field
conditions, relying on natural variation in defense traits
in wild plants. The use of observational field studies
meant sacrificing controlled conditions, but it provided a
realistic context for plant defenses and allowed us to
study defenses that are not easily manipulated in the lab.
Using two specialist chewing herbivores (the swamp
milkweed beetle Labidomera clivicollis and the monarch
butterfly Danaus plexippus), we tested the defense syn-
ergy hypothesis for two predicted synergies: latex by
cardenolide and latex by trichome. We also explored
other potential synergies and antagonisms between
cardenolides, trichome density, latex, leaf toughness, car-
bon, nitrogen, and leaf mass per area. Where synergies
and antagonisms have not been previously hypothesized,
we sought evidence for trait interactions that are worthy
of more targeted experiments. Our methods provide a
road map for future tests of the synergy hypothesis

F I GURE 1 Conceptual diagram of types of trait synergies. (a and b) Without a synergy between defense traits X and Y, the per-unit

benefit to the plant of investing in one trait does not depend on the investment level of the other. This leads to linear relationships between

investment in a trait and the resulting benefit to the plant, with differences in investment in the second trait changing the intercept but not

the slope. These relationships can be captured with a regression model that does not include an interaction term. (c and d) With a bilinear

synergy, the per-unit benefit of investing in one trait varies linearly with investment in the other. This leads to linear relationships between

investment in a trait and the resulting benefit to the plant, with both the slope and the intercept depending on the investment level in the

other trait. These relationships can be captured by an interaction term in a regression model; they are also shown in Figure 3a. (e and f)

Non-bilinear synergies produce more complicated relationships between investment in traits and benefit, which are not well represented

by interaction terms in regression models. We present an approach to identifying the presence of these synergies (but not their functional

form) using random forests. Here we show a synergy in which the benefit depends in part on the product of a saturating function of

investment in trait X and a threshold function of investment in trait Y. (a) and (b) benefit = a + b � (investment in X) + c � (investment in

Y); (c) and (d) benefit = a + b � (investment in X) + c � (investment in Y) + d � (investment in X) � (investment in Y); (e) and (f)

benefit = a + b � (investment in X) + c � (investment in Y) + d � f (investment in X) � g (investment in Y); f (X) = X/(X + h);

g (Y) = 1/(1 + exp (m � (Y + q)). In all cases, a = 1, b = 0.3, c = 0.6. When present, d = 1, h = 0.1, m = �20, q = �1.
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between classes of plant defenses and for other evalua-
tions of trait synergies in ecology.

MATERIAL AND METHODS

Study species

A. syriaca is a long-lived herbaceous plant native through-
out eastern North America, often found in recently dis-
turbed habitats including roadsides and fields. Larvae of
D. plexippus and L. clivicollis are both specialist herbivores
that commonly feed on the leaf tissues of A. syriaca in our
study area. Both of these herbivores have modifications to
their Na,K-ATPase (sodium pumps) that increase their tol-
erance of cardenolides (Dobler et al., 2012) but do not pro-
vide complete immunity (Agrawal, 2005; Jones et al., 2019;
Tao et al., 2016; Zalucki et al., 2001).

Field experiments

In September 2015, we conducted an experiment to assay
the growth and survival of neonate monarch caterpillars,
D. plexippus, on 117 A. syriaca plants near Ithaca, NY
(42.39 N, 76.39 W). Caterpillars were obtained from a lab-
oratory colony (Jones & Agrawal, 2019). We selected
plants from a natural population haphazardly, using dis-
tance and visual phenotype to avoid selecting ramets
from the same plant; we also avoided ramets that showed
high levels of damage or early senescence. We placed two
freshly hatched monarch caterpillars on one of the top
pair of fully expanded leaves and enclosed them in a fine
mesh bag. We used the other leaf in that pair to measure
plant traits, including taking latex and toughness mea-
surements and collecting a leaf disc for measuring tri-
chome density and leaf mass per area (LMA), the inverse
of specific leaf area. We then removed that paired leaf to
be dried for measurement of cardenolides, carbon, and
nitrogen.

Latex, leaf toughness, LMA, and cardenolides were
quantified following standardized methods (for a detailed
description, see Hahn et al., 2019). In brief, latex was
measured by removing 2–3 mm of the leaf tip and
measuring the weight of the resulting latex exudate;
leaf toughness was measured using a penetrometer
(Chatillon type 5/6) once on either side of the leaf and
averaging the results; LMA (kg dry mass/m2) was
measured by drying and weighing a 31.67 mm2 leaf
disc; cardenolides were separated and measured from
dried and ground leaf tissue using high-performance
liquid chromatography (HPLC) following the methods
described in Züst et al. (2019). Observed cardenolide

compounds did not match currently identified com-
pounds, so we report their identity based on the retention
time (e.g., during HPLC analysis, cardenolide 10.7 eluted
at 10.7 min). Trichome density was measured by first
imaging the underside of leaf discs with the ZEISS
SteREO Discovery V20, then using ImageJ to draw verti-
cal and horizontal transects through the middle of the
disc and counting all hairs that crossed the transects
(Schindelin et al., 2012). These transect counts were
highly correlated with densities obtained by counting all
hairs in a quadrant of the leaf disc but were faster and
more robust to overlapping hairs (Collin B. Edwards,
unpublished). Ground and dried leaf samples were ana-
lyzed at the Cornell Isotope Laboratory (COIL) for con-
centrations of carbon and nitrogen.

Monarch caterpillars generally remained on the
plants for 6 days and were then removed and weighed.
In a few cases, field conditions prevented collection on
Day 6, and caterpillars were instead collected on Day 7;
we account for this discrepancy by including a random
effect of plant in our regression models. Missing caterpil-
lars were presumed dead. In several cases, plants died
during the experiment, necessitating their removal from
the study. In total, we obtained 165 weighed larvae and
183 measures of survivorship for 92 plants.

In September 2016, we conducted an experiment to
assay the growth and survival of neonate swamp milk-
weed beetles, L. clivicollis, on 129 A. syriaca plants using
the same methods as described previously, with the fol-
lowing exceptions. First, we used a separate field site
�300 m away, at Dunlop Meadow (a Cornell University
Natural Area). Second, because L. clivicollis aggregate in
their early life stages, we placed five larvae in each enclo-
sure rather than two. In a few cases, loss of larvae during
placement left us with only four larvae in an enclosure.
Third, owing to unusual weather patterns, many of the
plants experienced accelerated senescence during the
experiment; we did not include these samples. Fourth,
owing to contamination of tissue samples, we were
unable to measure LMA or carbon and nitrogen concen-
trations. In total, we obtained 133 weighed larvae and
464 records of survivorship for 95 plants.

Analysis

We took two approaches to analyzing our data. First, we
looked for bilinear synergies and antagonisms using a
traditional linear regression approach, where synergies
and antagonisms were represented with a statistical
interaction term. Second, we implemented a novel (for
ecology) extension of random forests to identify syner-
gies and antagonisms that were not bilinear. In all cases,
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our metric of herbivore growth was log final mass. For
regression analyses, we rescaled plant traits so that their
mean was zero and their SD was 1; for random forest
analyses we rescaled plant traits so that their maximum
was 1.

In total we had two data sets, each with two measures
of herbivore response (survival and growth). For simplic-
ity, in the rest of this paper we will refer to these data sets
as “Monarchs” and “Beetles.” These two data sets have
some overlap in the defense traits measured, but the
cardenolide compounds expressed in each year were dif-
ferent, and, owing to sample contamination, we were
unable to measure LMA, carbon, or nitrogen in the
Beetles data. To facilitate interpretation, we recontextual-
ize percent nitrogen as “non-nitrogen” (100 minus per-
cent nitrogen), so that all analyzed traits are expected a
priori to have a negative effect on herbivores. Although
carbon and nitrogen concentrations are sometimes
combined into the carbon-to-nitrogen ratio (C:N) as a
proxy for nutritional quality, here we treat carbon and
(non-)nitrogen as independent, as we and others have done
elsewhere (e.g., Agrawal, 2004a,b). This decision was driven
by three factors. First, the purpose of our study was to quan-
tify trait interactions, and precombining two traits in a fixed
fashion as in the C:N ratio instead presupposed a specific
trait interaction. Second, herbivores sometimes respond to
carbon and nitrogen separately; analyzing them as separate
traits allowed us to detect this. Third, we found that varia-
tion in C:N was driven almost exclusively by variation in
(non-)nitrogen (correlation coefficient of 0.95, p < 0.001)
and was uncorrelated with carbon (correlation coefficient of
�0.077, p = 0.3) (Appendix S1: Figure S1).

Trait correlations

We computed pairwise across-plant trait (phenotypic)
correlations for each of our data sets using Pearson corre-
lation coefficients. Each of our data sets contained several
cardenolide compounds that were highly correlated
(Monarchs: cardenolides 17.4, 17.7, 18.4; Beetles:
cardenolides 10.7, 18.1). For each of these suites of
covarying cardenolides, we used principal component
analysis (PCA) to identify a single measure—the first
principal component (PC)—that represented 95%
(Monarchs) and 98% (Beetles) of the variation in those
cardenolides. All further analysis used these first PCs in
place of the individual cardenolides in question, labeled
“cardenolide suite 2015” and “cardenolide suite 2016.”
For the remaining cardenolides, which were not highly
correlated (Monarchs: cardenolides 10.5, 18.6; Beetles:
cardenolides 8.4, 10.2), we treated each compound as a
separate defense trait.

Linear regression

For each trait pair (e.g., latex by trichomes, latex by
cardenolide for each of the independent compounds
[10.5, 18.6, 10.2, 8.4] and the two cardenolide suites), we fit
a regression model that included main effects for the two
focal traits and an interaction between those two traits. We
also include a random effect of plant identity to account for
structure in the data; this term captured the shared experi-
ence of multiple herbivores on the same plant as well as
variation associated with the day herbivores were put on
plants. We then used marginal hypothesis testing to identify
the significance of the interaction term. Because this analy-
sis involved many comparisons, we discourage viewing
p-values as part of a null hypothesis significance test
(NHST) to “definitively” prove (or find lack of proof for)
specific synergies or antagonisms. Instead, we emphasize
the value of p-values as evidence (or a lack of evidence) for
synergies or antagonisms (Muff et al., 2022); synergies and
antagonisms with the smallest p-values are those that the
data most strongly support. Following Muff et al. (2022), we
designate p < 0.01 as strong evidence, 0.01 < p < 0.05 as
moderate evidence, and 0.05 < p < 0.1 as weak evidence.
We note that focusing on p-values as evidence rather than a
binary NHST is more consistent with the actual definition
and statistical best practices for p-values and is a good idea
even without multiple comparisons.

In what follows, we develop a technical basis for
interpreting the regression interaction coefficient, then
describe the intuition this provides. For a pair of scaled
traits x1 and x2 with main effect coefficients β1 and β2
(these represent the direct effect on the herbivore of vari-
ation in either trait when the other is at its average) and
interaction coefficient β12, we can rewrite our expectation
for the expected herbivore performance y from the stan-
dard regression form

E y½ � ¼ β0þβ1x1þβ2x2þβ12x1x2 ð1Þ

to

E y½ � ¼ β0þ β1þβ12x2ð Þx1þβ2x2: ð2Þ

From Equation (2) we see that the expected effect of vary-
ing the level of Trait 1 (x1Þ depends on both β1 (the direct
effect of Trait 1) and the product of β12 (the interaction
coefficient) and x2. Because we are working with scaled
trait values, x1 and x2 represent deviations from the
mean trait values across our experiment. When β12 is
negative, if Trait 2 is above the mean for that trait (x2 is
positive), higher-than-average values of Trait 1 (positive
values of x1) are associated with reduced herbivore
performance relative to when Trait 2 is at its mean.
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Because Equation (1) can just as easily be rewritten to
focus on variation in Trait 2, in the form

E yð Þ¼ β0þ β2þβ12x1ð Þx2þβ1x1 ð3Þ

we see the interpretation is symmetrical, and β12 is modi-
fying the effect of each trait in the context of the other.
When herbivore survival is the response, y is the logit
transformation of survival, but this interpretation still
applies to survival because the logit and its inverse are
monotonic.

To identify an interaction as a synergy or an antago-
nism, we look to the sign of the interaction coefficient,
β12. Because the response is insect performance, a nega-
tive coefficient for the interaction term represents a
potential synergy between traits; herbivore performance
is lower when the traits are both above average expres-
sion levels compared to what we would expect from the
separate effect of each of the trait’s expression levels.
Similarly, a positive interaction coefficient represents an
antagonism between traits. Because each trait is rescaled
to have mean 0 and SD 1, the interaction term can be
interpreted as modifying the effect of one trait based on
how far the other trait is from the mean. Because the
classification of a trait as a defense against herbivores
could be context-dependent (see following discussion),
we took the inclusive approach of identifying synergies
and antagonisms based solely on the sign of the interac-
tion coefficient.

An underlying assumption of many plant–insect ecolo-
gists (including ourselves) is that for a given pair of plant
and herbivore species, a plant trait generally is or is not a
defense. However, a key insight from Equation (2) is that,
depending on the strength of trait interactions, a focal trait
can be harmful or helpful to herbivores depending on the
expression levels of other traits. From Equation (2) we find
that the net effect on herbivores of increasing Trait 1
changes sign (e.g., switches from being defensive to benefi-
cial to herbivores or vice versa) when β1 ¼�β12x2. This
switching point depends on the coefficients of the main
effect (β1) and interaction (β12Þ, as well as how far Trait 2
is from its mean (x2). For a linear model with a nonzero
interaction term, a switching point will always exist, but
it may be associated with extreme, biologically unreason-
able trait values. We calculated the switching point for
each trait pairing, treating a switching point as biologi-
cally reasonable if it occurred when the nonfocal trait
value was within one SD of its mean. We designated a
trait as “context-dependent” if, when paired with each
other trait, at least one of the switching points was bio-
logically reasonable. If no switching points were biologi-
cally reasonable, we designated the trait as “defensive” or
“helpful” based on whether it was harmful or helpful to

herbivore performance when other traits were at
their mean.

Because the interaction coefficient is interpreted on the
scale of the linear predictor rather than the response, its
magnitude cannot be used to compare the strength of syner-
gies between survival (logit-link) and growth (identity-link)
responses or to make comparisons with equation-free
models like random forests. To provide a more interpretable
and robust measure of the strength of synergies and antago-
nisms, we developed two new metrics, which we introduce
here. The first, the “predictable response range” (PRR), cap-
tures the variation in response values that can be attributed
to a model. The second, the percentage of predicted
response variation explained by the interaction (%PRV),
captures the relative role of nonadditivity (e.g., synergy or
antagonism) in explaining model predictions.

Predictable response range is a metric for any model,
and describes the range of model predictions for the data
(Figure 2). Much like the coefficient of determination, R2,
PRR is a tool to understand the variation in the dependent
variable that can be explained by the model. Unlike R2,
however, PRR focuses on explaining how the dependent
variable is expected to change (e.g., from modeled effects,
after excluding the variation from random noise and
unmodeled variables) if predictor values were changed
from the least favorable to the most favorable observation
in the data. For regression models, PRR was simply the
range of ŷ, the model predictions of the data (Figure 2).
For the random forest analysis, calculation was slightly
more complex (Appendix S1) but produced an analogous
range. When applied to our models of two defense traits
and their interaction, PRR captured how much the plant
with the highest predicted herbivore performance could
expect to benefit if it were able to modify its two modeled
traits to those of the plant with the lowest predicted herbi-
vore performance. PRR thus represented all explained
effects of the trait combination on herbivores in our data:
the combination of direct effects of the traits, bilinear syn-
ergies or antagonisms, and, in the case of random forests,
any other nonadditive relationships.

%PRV is a metric measuring how much of the variation
explained by a model can be attributed to nonadditive
terms. We calculated this by first using the fitted model in
question to predict response values (survival or log final
mass) across a grid of the two focal trait values, then fitting
an additive model to those predictions, with the trait values
treated as factors. This new additive model should perfectly
fit any variation in the response that can be attributed to
additive effects (e.g., will exactly fit data predicted from a
linear model without an interaction term); any residuals of
this new additive model are therefore due to nonadditivity.
We calculate %PRV from a Type III ANOVA of the additive
model: %PRV is the ratio of the residual sum of squares to
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the total sum of squares, multiplied by 100 to convert to
percentages. This makes %PRV somewhat analogous to R2

converted to percentages: A value of 50% means that half of
the variation in model predictions is due to nonadditive
model components. To avoid %PRV depending on regions
of extrapolation, we used a weighted ANOVA with weights
corresponding to nearness to actual data points, calculated
using multivariate kernel density estimation (see Edwards
et al., 2022 for implementation details).

Predictable response range and %PRV have natural units
that are comparable between models: range in the response
(log weight or survival) and percentages, respectively.

Because random forests are more flexible than regression
models, we expect the noninteractive components of our
random forest decomposition (see following discussion) to
explain a larger fraction of the variation in the data
than would our regression models, resulting in a lower
%PRV for random forest analyses than regression models.

Random forest

Like many machine learning algorithms, random forests
can be very effective at prediction (e.g., “How fast do

F I GURE 2 Example of predictable response range (PRR) for simplified simulated data. Black points represent simulated data; blue circles

show predictions for those points from a fitted model. PRR captures the range of response values (e.g., growth or survival) predicted for data

points. Here 30 trait values were drawn from a uniform distribution ranging from 1 to 9, and (a) growth and (b) survival responses to traits were

simulated. The dashed line shows models fit to the data of the form “response � trait” using (a) linear regression or (b) logistic regression.
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caterpillars grow on a plant with these specific defense
traits?”) but do not directly provide information (analo-
gous to regression coefficients) about the basis for those
predictions (e.g., “How much does each plant trait affect
caterpillar growth rate?”). Hooker (2007) provided a
methodology for interrogating a fitted random forest
model to determine the presence or absence of interac-
tions among variables and to quantify the importance of
interactions if they are present. For a given experiment
and response (growth or survival), we first fit a random
forest model that included all available plant traits
(random forests capture interactions without needing
explicit terms to represent them). Following Hooker
(2007), we then treated this fitted model as if it were
an experimental system, in which we could measure
herbivore performance on hypothetical plants having
any specified combination of defense trait values. We
conducted simulated experiments using the fitted
random forest to generate the “response” (predicted
herbivore performance) for a set of hypothetical plants
across a grid of trait values. The predicted herbivore per-
formance was thus the result of any linear and
nonlinear patterns in the real data that the random
forest model captured. We carried out simulated
experiments for each pair of defense traits and
analyzed the resulting simulated data to determine
whether the response was additive (no interactions) or
nonadditive (synergy, antagonism, or other relation-
ship). For a detailed walkthrough of simulated experi-
ments and their analysis, see Appendix S1 (annotated
code for implementing this technique is available on
Figshare; Edwards et al., 2022).

Simulated synergies and antagonisms

Because random forest models are equation-free, the
method presented above for using random forest models
can capture non-bilinear synergies (or antagonisms), but
the fitted model does not provide information for the func-
tional form of that relationship, nor does PRR or %PRV.
To determine how to identify when fitted random forest
with nonadditive relationships represented synergies or
antagonisms, we simulated data as if it had been generated
by the random forest analysis procedure described earlier,
but with known functional forms of synergies or antago-
nisms (see Appendix S1 for details). As in the previously
described methodology, we fit this simulated data with an
additive linear model. Synergies and antagonisms repre-
sent nonadditive processes and might be identifiable from
the residuals of this model; we plotted those residuals
(the third column in Figure 3a–f). We explored many
potential trait synergies and antagonisms but here present

results for three synergies (linear, threshold, diminishing
marginal returns [DMR]) and three antagonisms (linear,
threshold, decaying).

Classifying random forest results

Based on our simulations, we found that synergies and
antagonisms had residuals that could be separated into
four quadrants based on the sign of the residuals
(Figure 3). For simplicity, we label the four quadrants
Q1, Q2, Q3, and Q4 starting in the bottom left (nearest
the origin) and moving clockwise. We found that syner-
gies were represented by herbivores underperforming
the additive model (negative residuals) in Q1 and
Q3 (the quadrants on the diagonal) and overperforming
the additive model (positive residuals) in Q2 and
Q4 (the quadrants on the off-diagonal). The reverse was
true for antagonisms. To quantify how much a given
trait pair matched one of these qualitative patterns, we
defined a new test statistic, θ. θ was calculated as the
sum of the signs of residuals in Q1 and Q3 minus the
sum of the signs of residuals in Q2 and Q4 divided by
the total number of predictions summed. Residuals of
0 were given a sign of 0. For any pair of breakpoints
separating the trait space into four quadrants, θ
represented the average tendency toward synergy (neg-
ative values) or antagonism (positive values), with
θ = �1 if each prediction followed the described pat-
tern for synergies, θ = 1 if each prediction followed the
described pattern for antagonisms, and 0 if residuals
were evenly split between those patterns. For each
fitted random forest model, we chose the breakpoints
that maximized the absolute value of θ, i.e., the
breakpoints that best represented a synergy or antago-
nism. To classify an interaction as a synergy or antago-
nism, we simulated 999 permutations of the random
forest predictions, in which the predictions of each grid
point were randomly reassigned. For each of these sim-
ulated data sets, we then identified the new optimal
breakpoints and calculated the new θ, generating the
null distribution of θ for that trait pair. We designated
an interaction “unclear” if the observed θ was between
the 0.025 and 0.975 quantiles of the null distribution
and “synergy” or “antagonism” if it was below or above
those thresholds, respectively.

Software and packages

All analyses and simulations were carried out in the
R programming language (R Core Team, 2021). We
used the following key packages: mgcv (Wood, 2011)
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to fit mixed-effects models; randomForest (Liaw &
Wiener, 2002) to fit random forest models; car
(Fox & Weisberg, 2019) for marginal hypothesis
testing and calculating sum of squares; the tidyverse
package suite (Wickham et al., 2019) for data cleaning
and manipulation; and ggplot2 (Wickham, 2016),
ggpubr (Kassambara, 2020), and cowplot (Wilke, 2020)
for creating figures. The scripts used to carry out
all our analyses are available on Figshare (Edwards
et al., 2022).

RESULTS

Trait correlations

Several patterns of trait co-expression emerged in our field
studies (Appendix S1: Figures S1 and S2). In 2015, several
of the physical traits showed positive phenotypic correla-
tions; notably, leaf toughness was correlated with both
latex exudation from leaves (r = 0.17, p < 0.021) and leaf
trichome density (r = 0.49, p < 0.001). Percentage leaf
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F I GURE 3 Data simulated from known synergies or antagonisms. For each relationship, we first show the per-unit benefit of

investment in trait Y (when Y is at 0.5) as trait X is varied (left), then herbivore performance, which could represent growth or survival

depending on units and rescaling (middle), then the residuals of herbivore performance when fit with an additive model (right). In the

residual plots, positive values show herbivores overperforming the additive model, and negative values show herbivores underperforming

the additive model. (a–c) For synergistic relationships, herbivores underperform the additive model when both defense traits are high or

both are low and overperform when one trait is high and the other is low. (d–f) For antagonistic relationships, herbivores overperform the

additive model when both traits are high or both are low and underperform when one trait is high and the other is low.
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carbon was positively correlated with the two traits that
clearly incorporated carbon, trichome density (r = 0.49,
p < 0.001) and leaf toughness (r = 0.21, p < 0.01). In 2016,
physical defense traits (trichomes, toughness, and latex)
all had significant positive correlation with each other
(latex and toughness, r = 0.38, p < 0.01; latex and tri-
chomes, r = 0.13, p < 0.04; toughness and trichomes,
r = 0.30, p < 0.01) and were generally negatively corre-
lated or essentially uncorrelated with cardenolides.

Linear regression

For supressing monarch growth, we found strong evi-
dence for a bilinear synergy between non-nitrogen and

LMA, moderate evidence for a bilinear synergy between
leaf toughness and carbon and between non-nitrogen
and trichome density, and weak evidence for a bilinear
synergy between leaf toughness and trichome density
and between leaf toughness and non-nitrogen (Table 1).
For suppressing monarch growth, we also found moder-
ate evidence for a bilinear antagonism between
cardenolide 18.6 and non-nitrogen, between cardenolide
18.6 and leaf toughness, and between cardenolide 18.6
and LMA. For reducing monarch survival, we found
weak evidence for a synergy between cardenolide 18.6
and latex. For suppressing L. clivicollis growth, we found
weak evidence for a synergy between latex and
cardenolide 10.2 and between latex and leaf toughness.
We also found weak evidence for an antagonism between
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F I GURE 3 (Continued)
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cardenolide 8.4 and the covarying cardenolide suite 2016.
For reducing L. clivollis survival, we found weak evidence
for a synergy between latex and cardenolide 10.2.

All of our presumed defense traits showed
context-dependent effects. Of the 204 interaction pairs,
93 (46%) had switching points that were within one SD of
the mean of the second trait (e.g., Figure 4) (see
“context-dependence-all.csv” in Edwards et al., 2022).
Only 75 of the pairs (37%) had switching points more
than two SDs from the mean. Moreover, of all the traits
measured, each of them were context-dependent rather
than consistently defensive (or consistently beneficial to
herbivores) in at least one trait pairing for either growth
or survival (Table 2).

Simulations to classify random forests

Data simulated from synergies always produced residual
plots in which the bottom left and top right regions
showed herbivores underperforming compared to pre-
dictions from an additive model (an ANOVA model
with no interaction terms, fitted to the simulated data),
and the top left and bottom right showed herbivores
overperforming compared to predictions from an addi-
tive model (e.g., Figure 3a–c). The reverse was true for
antagonisms: Herbivores always overperformed com-
pared to predictions from an additive model in the bot-
tom left and top right and underperformed compared to

predictions from an additive model in the top left and bot-
tom right regions (e.g., Figure 3d–f). Depending on the
functional form of the synergy or antagonism, patterns of
residuals did not always separate perfectly into four quad-
rants (e.g., Figure 3c, right panel), but the general pattern
held true for all synergies and antagonisms we evaluated
(see code in Edwards et al. [2022] to explore additional
synergies and antagonisms).

Random forests

Random forests identified many additional synergies
and antagonisms that were not detected using regres-
sion approaches (recall, differences in results are
expected, because the regression analysis specifically
tests for bilinear departures from linearity, whereas the
random forests analysis tests for arbitrary deviations
from additivity). Because our metrics for evaluating the
nonadditivity of the modeled relationship are new, there
are no clear guidelines as to what constitutes strong or
weak evidence. We chose to emphasize synergies and
antagonisms with a %PRV of 20 or higher (i.e., 20% or
more of the sum of squares of the random forest model
predictions cannot be explained by additive models) for
which the relationship was clear (i.e., θ outside the 95%
range of the null distribution). We chose this reporting
threshold because we judged that it identified a reason-
able but not overwhelming number of highest-impact

TAB L E 1 Summary of regression analysis for bilinear interactions, showing all trait pairs with p < 0.1; lower p-values represent

synergies or antagonisms with stronger support.

Data set Trait 1 Trait 2 Relationship F or χ2 p %PRV PRR

Beetle growth Latex Cardenolide 10.2 Synergy 3.9439 0.051 27 �6.71 to �5.92

Beetle growth Latex Leaf toughness Synergy 3.836 0.054 96 �7 to �5.7

Beetle growth Cardenolide suite 2016 Cardenolide 8.4 Antagonism 2.8265 0.096 60 �6.69 to �5.67

Beetle survival Latex Cardenolide 10.2 Synergy 2.6981 0.1 20 0 to 0.84

Monarch growth Non-nitrogen LMA Synergy 10.3651 0.002 53 �5.77 to �4.51

Monarch growth Non-nitrogen Cardenolide 18.6 Antagonism 5.7922 0.018 84 �5.62 to �4.58

Monarch growth Leaf toughness Carbon Synergy 5.2086 0.025 61 �5.84 to �4.57

Monarch growth Leaf toughness Cardenolide 18.6 Antagonism 5.187 0.025 98 �5.39 to �4.58

Monarch growth Cardenolide 18.6 LMA Antagonism 4.9287 0.029 75 �5.52 to �4.58

Monarch growth Trichome density Non-nitrogen Synergy 4.2549 0.042 34 �5.37 to �4.38

Monarch growth Leaf toughness Trichome density Synergy 3.5435 0.063 34 �5.46 to �4.5

Monarch growth Leaf toughness Non-nitrogen Synergy 3.0646 0.083 61 �5.32 to �4.7

Monarch survival Latex Cardenolide 18.6 Synergy 3.1335 0.077 82 0.66 to 1

Note: LMA is leaf mass per area, the inverse of specific leaf area. F-statistic and chi-square statistic are for a single model term with 1 df; relationship is
identified by the sign of the interaction coefficient (negative = synergy). %PRV measures the importance of nonadditivity in explaining model fit (see Methods);

PRR (“predictable response range”) measures the range of response values predicted by the model (see Methods). For growth, PRR is in units of log (grams final
weight), and for survival, PRR is the expected probabilities of herbivore survival.
Abbreviation: PRV, predicted response variation.
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interactions on which to focus. We provide readers with
all results with clear relationships and a %PRV larger
than 5 in Table 3 (and all results are available in
“results-correspondence.xlsx” in Edwards et al., 2022).

All 10 synergies and antagonisms with a %PRV of 20 or
greater were detected for monarch survival. The relation-
ship with the highest %PRV (33%) was a synergy between
latex and trichome density, with an expected probability
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F I GURE 4 Bilinear synergies fit to observed data using regression models, for all interaction terms with p < 0.1 (Table 1). Heat maps

show predicted survival or growth from fitted models (analogous to central column of Figure 3); points correspond to trait values of observed

plants. Orange diamonds show the “switching points” where the effect on herbivores of increasing a plant trait changes from being helpful to

harmful or vice versa. Note that the values of the surface in regions without data are unlikely to represent meaningful patterns

(i.e., extrapolation away from the data should not be trusted). Units: Leaf mass per area is shown in grams per 10 cm2 dry mass, carbon and

non-nitrogen in percentage of dry mass, leaf toughness in grams of force, trichomes in counts per millimeter of transect, cardenolides in

milligrams per gram of dry mass, latex in milligrams of fresh mass, and cardenolide suites are unitless.
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of survival ranging between 0.68 and 0.93 across
observed trait values (PRR). Of the 10 interactions
with a %PRV of 20 or higher, physical traits of
leaves—trichome density, leaf toughness, and LMA—
were present in all but one, half of the interactions
involved one of the two nutritional quality traits (carbon
or non-nitrogen), and three of the five synergies
involved one cardenolide compound, cardenolide 10.5.

Correspondence between regression and
random forest results

Eight of the 13 bilinear synergies and antagonisms
identified using regression were similarly classified as
synergy or antagonism using random forests (for joint
summaries of regression and random forest analyses, see
“results-correspondence.xlsx” in Edwards et al., 2022).

TAB L E 2 Context dependence of traits; traits were identified as context-dependent if their effect on herbivores switched sign (positive

to negative) in response to another trait changing values within one SD of its mean.

Trait Response Context-dependent on

Carbon Monarch growth …

Carbon Monarch survival Cardenolide 18.6, leaf toughness, cardenolide suite 2015

Non-nitrogen Monarch growth Leaf mass per area (LMA), cardenolide 10.5, cardenolide 18.6, carbon, trichome
density, leaf toughness, cardenolide suite 2015

Non-nitrogen Monarch survival LMA, cardenolide 18.6

Cardenolide 10.2 Beetle growth Cardenolide 8.4, leaf toughness, trichome density, latex

Cardenolide 10.2 Beetle survival …

Cardenolide 10.5 Monarch growth LMA, cardenolide 18.6, non-nitrogen, carbon, latex, leaf toughness, cardenolide suite
2015

Cardenolide 10.5 Monarch survival Cardenolide suite 2015

Cardenolide 18.6 Monarch growth LMA, cardenolide 10.5, non-nitrogen, carbon, latex, leaf toughness, cardenolide suite
2015

Cardenolide 18.6 Monarch survival LMA, cardenolide 10.5, non-nitrogen, carbon, latex, trichome density, cardenolide
suite 2015

Cardenolide 8.4 Beetle growth Cardenolide 10.2, leaf toughness, trichome density

Cardenolide 8.4 Beetle survival …

Cardenolide suite 2015 Monarch growth Non-nitrogen, leaf toughness

Cardenolide suite 2015 Monarch survival Cardenolide 10.5, cardenolide 18.6, carbon, latex, trichome density

Cardenolide suite 2015 Beetle growth Cardenolide 8.4, cardenolide 10.2, trichome density

Cardenolide suite 2015 Beetle survival Cardenolide 10.2

Latex Monarch growth …

Latex Monarch survival LMA, cardenolide 10.5, cardenolide 18.6, carbon, trichome density, leaf toughness,
cardenolide suite 2015

Latex Beetle growth Cardenolide 10.2, leaf toughness, trichome density

Latex Beetle survival Trichome density

LMA Monarch growth Cardenolide 18.6, non-nitrogen, trichome density, cardenolide suite 2015

LMA Monarch survival Cardenolide 10.5, cardenolide 18.6, non-nitrogen, carbon, latex

Leaf toughness Monarch growth Cardenolide 10.5, cardenolide 18.6, non-nitrogen, carbon, latex, trichome density,
cardenolide suite 2015

Leaf toughness Monarch survival Carbon

Leaf toughness Beetle growth Latex

Leaf toughness Beetle survival Cardenolide 10.2, cardenolide suite 2016, trichome density

Trichome density Monarch growth …

Trichome density Monarch survival Cardenolide suite 2015

Trichome density Beetle growth Cardenolide 8.4, cardenolide 10.2, cardenolide suite 2015, latex

Trichome density Beetle survival Cardenolide 10.2, cardenolide suite 2016, leaf toughness, latex
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In four cases, regression identified bilinear interactions
that our random forest method did not clearly identify as
either synergy or antagonism. For the interaction
between cardenolide 8.4 and the cardenolide 2016 suite
on L. clivicollis growth, the “unclear” designation derives
from poor statistical power (only four of the 100 grid cells
in trait space were usable) (Appendix S2: Figure S1). The
other three interactions (latex by leaf toughness on
L. clivicollis growth, cardenolide 18.6 by leaf toughness
on monarch growth, non-nitrogen by leaf toughness on
monarch growth) likely reflect complicated functional
forms that did not fall clearly into synergies or antago-
nisms using random forests but were identifiably

synergies or antagonisms when simplified to bilinear
interactions. Of the bilinear synergies identified using lin-
ear regression, only the leaf toughness by trichome den-
sity interaction on monarch growth conflicted with
random forest results (regression: weak evidence for a
synergy; random forest: antagonism with %PRV = 3). Of
the synergies identified using random forests, none of the
10 interactions with %PRV 20 or higher had any evidence
of bilinear synergy (p > 0.1 in all cases). In fact, of the
37 interactions random forest analyzed with a %PRV of
5 or greater, only four interactions (synergies) had
p-values < 0.1. In general, %PRV was much higher for
regression models than for random forests. This was true

TAB L E 3 Summary of random forest analysis showing all trait pairs with %PRV of five or higher (after rounding) with clear synergies

or antagonisms (θ outside the 95% limits of the null distribution from permutation testing).

Data set Trait 1 Trait 2 Relationship %PRV PRR

Monarch survival Latex Trichome density Synergy 33 0.68 to 0.93

Monarch survival LMA Cardenolide 10.5 Synergy 26 0.78 to 0.94

Monarch survival Leaf toughness Trichome density Antagonism 26 0.7 to 0.93

Monarch survival Cardenolide 10.5 Carbon Synergy 25 0.8 to 0.93

Monarch survival Trichome density Cardenolide 10.5 Synergy 24 0.66 to 0.93

Monarch survival Trichome density Carbon Antagonism 23 0.7 to 0.92

Monarch survival Latex Leaf toughness Antagonism 22 0.69 to 0.94

Monarch survival LMA Carbon Antagonism 21 0.79 to 0.92

Monarch survival LMA Non-nitrogen Antagonism 20 0.7 to 0.93

Monarch survival Trichome density Non-nitrogen Synergy 20 0.66 to 0.93

Monarch survival Leaf toughness Carbon Antagonism 19 0.76 to 0.93

Monarch survival Leaf toughness Cardenolide 10.5 Synergy 18 0.78 to 0.94

Monarch growth Leaf toughness Carbon Synergy 18 �5.37 to �4.9

Monarch survival Non-nitrogen Carbon Synergy 17 0.74 to 0.93

Monarch survival LMA Leaf toughness Antagonism 16 0.73 to 0.93

Monarch survival Latex Cardenolide suite 2015 Synergy 16 0.69 to 0.93

Monarch survival Latex Cardenolide 18.6 Synergy 16 0.7 to 0.93

Monarch survival Cardenolide 10.5 Cardenolide suite 2016 Antagonism 15 0.77 to 0.93

Monarch survival Cardenolide 18.6 Carbon Antagonism 13 0.8 to 0.92

Monarch growth Cardenolide suite 2015 Carbon Antagonism 11 �5.33 to �4.9

Monarch survival Cardenolide 18.6 Non-nitrogen Synergy 9 0.71 to 0.92

Monarch growth Trichome density Carbon Antagonism 9 �5.39 to �4.88

Monarch growth Non-nitrogen Carbon Synergy 8 �5.3 to �4.9

Monarch growth LMA Non-nitrogen Synergy 8 �5.31 to �4.95

Beetle growth Leaf toughness Cardenolide 10.2 Synergy 8 �6.51 to �5.92

Monarch growth LMA Carbon Antagonism 7 �5.35 to �4.88

Beetle growth Leaf toughness Cardenolide suite 2016 Synergy 7 �6.57 to �6.03

Beetle growth Cardenolide 10.2 Cardenolide suite 2016 Synergy 6 �6.59 to �6.06

Note: %PRV and PRR are the same metrics as in Table 1.
Abbreviations: LMA, leaf mass per area; PRR, predictable response range; PRV, predicted response variation.
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for all bilinear interactions with p < 0.1, 65% of interac-
tions with random forest %PRV greater than or equal to
5, and 70% of all interactions.

DISCUSSION

Using surveys of herbivore performance in the field and
both well-established and novel statistical tools, we found
evidence for the plant defense synergy hypothesis. We
found the first direct empirical support for previously
hypothesized synergies between latex and cardenolides
(Figure 4i,j) and between latex and trichomes (Figure 5a)
on monarch survival. We also found evidence for new
synergies and antagonisms. The strongest evidence was
for a bilinear synergy between non-nitrogen and LMA on
monarch growth (Figure 4a): monarch growth was worse
on thick, low-nitrogen leaves than the leaf thickness or
low nitrogen alone would imply. For low values of LMA
(thin leaves), increased non-nitrogen led to increased her-
bivore growth; similarly, for low values of non-nitrogen,
increased LMA increased herbivore growth. However, at
higher levels of either trait—past the switching point—
increasing the level of the other trait led to decreased her-
bivore performance. Lack of nitrogen and high LMA may
thus jointly contribute to low nutritional value for insect
herbivores (Wright & Cannon, 2001). Indeed, compari-
sons across milkweed species previously suggested low
nutritional quality as a convergent defense strategy
employed in this genus (Agrawal & Fishbein, 2006). In
addition to potentially shaping defense strategies on its
own, this synergy between non-nitrogen and LMA rein-
forces a pattern of covariation between LMA and
non-nitrogen associated with the leaf economics spec-
trum (Fajardo & Siefert, 2018; Wright et al., 2004); these
trait correlations have been explained by physiological
costs and benefits associated with resource acquisition
and leaf lifespan (Shipley et al., 2006). Previous work in
A. syriaca showed this relationship among wild plants in
the field and among genotypes grown in a common envi-
ronment (Agrawal, 2020). Our findings suggest that the
co-expression of LMA and low leaf nitrogen, identified as
part of the leaf economic spectrum, coincides with a
defense synergy: Nitrogen-poor plants suppress herbivore
growth even more with increasing LMA than do plants
with higher nitrogen content. This inference must be bal-
anced, however, by our finding that there was generally
an antagonism between LMA and non-nitrogen on mon-
arch survival; a detailed model would be needed to inte-
grate the combined effects of leaf economics, herbivore
growth, and herbivore survival.

Regression and random forest analyses produced both
overlapping and unique results, suggesting these tools are

complementary rather than redundant. When regression
analysis identified a significant bilinear synergy or antago-
nism, random forest analysis usually agreed with the type
of interaction. However, the strongest synergies and antag-
onisms identified by the random forest analysis did not
show evidence for bilinear interactions. Using only regres-
sion analysis, we would have identified a single synergy
for monarch survival (latex by cardenolide 18.5). However,
by applying our random forest methods, we identified an
additional five notable synergies affecting monarch sur-
vival (%PRV ≥ 20), including the latex by trichome density
synergy previously hypothesized based on the behavior of
D. plexippus caterpillars (Zalucki et al., 2002). In contrast,
many bilinear relationships identified using regression did
not have clear patterns or had small %PRV when exam-
ined using random forests. This reflects the different
strengths of these two methods; the relative simplicity of
regressions provides more power when relationships are
largely bilinear, allowing us to detect such relationships
more easily. In contrast, random forests are more flexible,
which allows them to detect relationships that are not
bilinear but makes them more data-hungry.

We were surprised to find that our analysis identified
nearly every “defensive” trait as context-dependent
(Table 2, Figure 4). Our regression models predicted that
the effect of increasing any given trait could be helpful or
harmful to herbivores depending on the expressed levels
of other traits (for example, the switching point in the
LMA by non-nitrogen synergy described above). This
context dependence is consistent with the adaptive
redundancy hypothesis (Rasmann & Agrawal, 2009)
and may help to explain why studies often find inconsis-
tent benefits of defensive traits (Agrawal, 2011). For
example, although cardenolides and latex are generally
correlated with resistance to caterpillars, sometimes they
have no apparent effect (Agrawal, 2005; Agrawal &
Fishbein, 2006). Although experiments might find differ-
ent or even conflicting results for many reasons, our
study suggests that the effect of a focal “defense” trait
could differ or even reverse if another key (potentially
unmeasured) trait differed sufficiently in expression
between two experiments. Such variation in interacting
traits is likely, as studies have found that expression
levels of individual defense traits can vary substantially
based on environmental conditions. For example, latex
can differ in expression based on water availability and
plant ontogeny (Agrawal et al., 2014; Barton, 2014), and
prickle and trichome density can vary based on light and
water availability (Agrawal et al., 2012; Barton, 2014;
Ehleringer, 1982). Taken together, this suggests plants
face a puzzle of interacting traits whose benefits all
depend on one another, with environmental conditions
impacting or constraining some of those traits.
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F I GURE 5 Plots of the three synergies and antagonisms identified from random forest analyses that showed the highest percentage of

predicted response variation (%PRV); all happen to be from the “Monarch” survival data. On the left, predictions of the random forest for pairs of

trait values calculated as described in the methods (analogous to the second column of Figure 3). White points represent actual data; only grid cells

containing actual data are plotted. On the right, residuals from fitting an additive model to the predictions on the left (analogous to the third column

of Figure 3). Black lines represent the quadrant separation that maximizes the difference in residual between Q1 + Q3 (bottom left and top right

quadrants) versus Q2 and Q4 (top left and bottom right quadrants) (i.e., the separation that maximizes the absolute value of θ). Note that because
additive models will perfectly fit grid cells that are alone in their row or column (necessarily leading to residuals of 0), we removed these entries from

the plots. Comparing this to Figure 3, we can see that the residuals of (a) and (b) are consistent with synergies, and the residuals of (c) are consistent

with antagonisms (permutation testing confirms this). Similar plots for every trait pair of each data set appear in Appendix S2: Figure S1.

(a) θ =�0.56, %PRV= 33, PRR = 0.683–0.934, (b) θ =�0.67, %PRV= 26, PRR = 0.782–0.937, (c) θ = 0.70, %PRV= 26, PRR = 0.696–0.929. Units
are as described in Figure 3. LMA, leaf mass per area; PRR, predictable response range; PRV, predicted response variation.
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The herbivores species used in our experiments were
both Asclepias specialists and have adaptations that par-
tially mitigate many of the defenses of milkweed plants
(e.g., Agrawal, 2005; Dobler et al., 2012; Jones
et al., 2019; Tao et al., 2016; Zalucki et al., 2001). As such,
low nutrient availability is expected to play a large role in
determining herbivore performance (Feeny, 1976) and
has been proposed as a strategy for Asclepias specifically
(Agrawal & Fishbein, 2006). Three of the bilinear syner-
gies identified by regression analysis and two of the nota-
ble interactions identified by random forest analysis (one
synergy, one antagonism) involve non-nitrogen. These
synergies and antagonisms involving non-nitrogen may
reflect the expected importance of low nutrition as a
defensive trait. Equivalently, these interactions between
non-nitrogen and other defense traits suggest that the
effect of those other traits—trichome density, LMA,
cardenolides, leaf toughness—vary based on the
resources available to the herbivore. Just as the effects of
environmental stresses on plants can vary substantially
based on resources available to those plants (e.g., Eneji
et al., 2008; Zahoor et al., 2017), we expect the effects of
plant defense traits to be different if the herbivore is lim-
ited by nitrogen or has it in relative excess.

Several of the identified synergies involved latex: latex
by various cardenolides, latex by leaf toughness, latex by
trichome density, and latex by LMA. Latex is present in
nearly 10% of angiosperm species and has no known
function in plants other than defense (Agrawal &
Konno, 2009). Latex can be quite harmful to herbivores
on its own (e.g., Van Zandt & Agrawal, 2004; Zalucki &
Brower, 1992), but its commonness across plant families
is all the more understandable if it synergizes with other
defenses. Here our measure of latex was the wet mass
exuded upon leaf damage, which in Asclepias typically
correlates negatively with insect performance.
Particularly notable were the latex by cardenolide syner-
gies identified in this study, which had previously been
proposed but not tested (Agrawal, 2011). Interpreting
latex by cardenolide synergies is potentially complicated
by the fact that variation in wet latex mass could repre-
sent dilution of the latex, in which case higher
cardenolide content in the plant tissues might be needed
simply to counterbalance dilution. However, because
each of our analyses only compared latex measured at a
single site in one season, we did not expect high variation
in water availability. Instead, measured variation in latex
likely reflects differences in the physical defense provided
by latex. The hypothesized mechanisms for latex by
cardenolide synergies—that latex could serve as a deliv-
ery system for toxic phytochemicals and toxic phyto-
chemicals make latex even more dangerous to
herbivores—is not a special feature of monarchs or

L. clivicollis feeding on A. syriaca. The latex of most
plants contains secondary metabolites, often at elevated
levels compared to other plant tissues (Agrawal &
Konno, 2009). Further, a recent study of the common
dandelion (Taraxacum officinale) found that herbivore
damage increased when sesquiterpene levels in latex
were reduced; whereas this study did not explicitly
address synergies, their findings imply a latex by sesqui-
terpene synergy (Huber et al., 2016). To our knowledge,
our study is the first to find explicit evidence for latex by
secondary metabolite synergies, but we speculate that
such synergies may be common across plant taxa.

Secondary metabolites are often emphasized in stud-
ies of plant defenses because of their generally unambig-
uous function in resistance to herbivores (Ehrlich &
Raven, 1964). We found numerous synergies and some
antagonisms between cardenolides and other defensive
traits in A. syriaca; this likely reflects the importance of
cardenolides in resisting milkweed herbivores (Agrawal
et al., 2021; Tao et al., 2016; Zalucki et al., 2001).
However, a meta-analysis of plant traits and herbivore
resistance found that physical resistance traits were more
reliably correlated with herbivore resistance, particularly
when the focus is on specialist herbivores (Carmona
et al., 2013). The three purely physical resistance traits
represented in our study (LMA, leaf toughness, trichome
density) were present in 60% of the identified bilinear
interactions and 90% of the identified random forest
interactions. The importance of physical resistance traits
in plant defenses across species and the prevalence of
synergies and antagonisms between physical traits and
other defenses in A. Syriaca suggest that the suites of
traits employed by individual plants may be structured by
the costs and indirect benefits of physical traits.

We found PRR to be a useful tool for examining the
effects of trait variation on response, measured in mean-
ingful units. We caution that this metric should only be
used for data in which variation in traits comes from nat-
ural sources (e.g., observational data). In a controlled
experiment in which we could manipulate the expression
levels of traits, PRR could generally be inflated by
increasing the range of trait values outside any biologi-
cally meaningful region. %PRV is a valuable tool for
interpreting the role of nonadditivity in model fits (and is
a necessary step for our use of random forests), but model
predictions should be weighed by their proximity to
actual data points to avoid %PRV values being driven by
extrapolation.

Multivariate plant defense strategies have been
explored through observations of trait co-expression. This
has been done at the level of between-species compari-
sons (e.g., Agrawal & Fishbein, 2006; da Silva &
Batalha, 2011; Moles et al., 2013; Sanczuk et al., 2020),
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between-population comparisons (e.g., Barton, 2014), or
between individuals within a population (e.g., Agrawal
et al., 2014). Trait co-expression can provide indirect sup-
port for synergies, but these same signals might represent
other forms of advantage or disadvantage for specific
combinations. Among Asclepias species, comparative
work has found interspecific patterns of co-expression
between latex and trichomes and between LMA and
non-nitrogen, but not between latex and cardenolide
expression (Agrawal & Fishbein, 2006). The statistical
framework we provide here helps explicitly identify traits
that are associated with synergistic (or antagonistic)
impacts on herbivores.

Tests of synergies between classes of defenses (rather
than between secondary metabolites within a class) are
rare, but ours is not the first. A few studies in aquatic sys-
tems found synergies between structural components (cal-
cium carbonate, spicules) and secondary metabolites in
artificial diets simulating seaweeds (Hay et al., 1994) and
sponges (Hill et al., 2005; Jones et al., 2005). Simpson and
Raubenheimer (2001) found that tannic acids had an effect
on locust only for some levels of protein-to-carbohydrate
ratios in artificial diets, suggesting that plant digestion
inhibitors might synergize with defense strategies of low
nutrient availability. Perhaps the strongest test for
cross-class synergies in terrestrial plants used gene knock-
outs in Nicotiana attenuata to show that trypsin proteinase
inhibitors (TPI, a form of digestion inhibitor) synergized
with toxic nicotine to defend against generalist Spodoptera
exigua (Steppuhn & Baldwin, 2007). Follow-up work in
the same system also found that TPI reduced caterpillar
response to simulated predation, suggesting a potential
defense synergy between parasitoid-attracting volatiles
and TPI. However, field experiments found plants with
higher TPI actually had reduced parasitism (Schuman
et al., 2012). Like Steppuhn and Baldwin (2007), Green
et al. (2001) found phytic acid (an antinutritive defense)
reduced insect metabolism of defensive xanthotoxins,
implying a potential synergy with phytic acid interfering
with specialist herbivore counterdefenses. However, this
relationship was not extended to measure the ultimate
effect of the phytic acid by xanthotoxin interaction on her-
bivore survival or growth.

The rarity of synergy tests between classes of defenses
is likely due in part to the logistical challenges involved
in such experiments. The overwhelming majority of syn-
ergy studies to date have used artificial diets
(e.g., Whitehead et al., 2021), and nonmetabolite defenses
like latex, leaf toughness, and trichomes do not lend
themselves to such controlled experiments. Similarly, the
most elegant current approaches to testing phytochemi-
cal synergies identify an interaction index based on the
dose necessary to cause 50% mortality (ED50) (Nelson &

Kursar, 1999; Richards et al., 2016; Tallarida, 2000).
These tools are well suited to artificial diet experiments
in which an ED50 is likely to exist but are difficult to
implement when defenses cannot be manipulated and
even high levels of putatively defensive traits have no
guarantee of causing mortality. The synergies and antag-
onisms between classes of traits identified here and in
the few other studies described earlier suggest that such
trait interactions are common, even if the study of them
is not. We hope the analytical tools provided here will
support a broader exploration of synergies in the study of
plant defenses. The benefits of being able to conduct such
rigorous tests under natural conditions make this
approach an essential complement to more controlled
and mechanistic studies.
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